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Abstract— 

For providers of composite services, preventing cases of SLA violations is crucial. Previous work has 

established runtime adaptation of compositions as a promising tool to achieve SLA conformance. However, to 

get a realistic and complete view of the decision process of service providers, the costs of adaptation need to be 

taken into account. In this paper, we formalize the problem of finding the optimal set of adaptations, which 

minimizes the total costs arising from SLA violations and the adaptations to prevent them. We present possible 

algorithms to solve this complex optimization problem, and detail an end-to-end system based on our earlier work 

on the PREvent (prediction and prevention based on event monitoring) framework, which clearly indicates the 

usefulness of our model. We discuss experimental results that show how the application of our approach leads to 

reduced costs for the service provider, and explain the circumstances in which different algorithms lead to more 

or less satisfactory results. 

Index Terms—Service composition, service-level agreements, adaptation, optimization 

 

I. INTRODUCTION 
SERVICE BASED applications have seen 

tremendous research activity in the last years, with  

many important results being generated around the 

world [1]. This global interest is justified by the ever 

increasing services industry, which is still only 

starting to explore the potential that new paradigms 

like Everything-as-a-Service (XaaS) or cloud 

computing provide [2]. However, to fully realize this 

potential,research and industry alike need to focus 

more strongly on nonfunctional properties and quality 

issue of services (generally referred to as QoS). In the 

business world, QoS promises are typically defined 

within legally binding service-level agreements 

(SLAs) between clients and service providers, 

represented, e.g., using WSLA [3]. SLAs contain 

service-level objectives (SLOs), i.e., concrete 

numerical QoS objectives, which the service needs to 

fulfill. If SLOs are violated, agreed upon monetary 

consequences go into effect. For this reason, providers 

generally have a strong interest in monitoring SLAs 

and preventing viola- tions, either by using post 

mortem analysis and optimiza- tion [4], [5], or by 

runtime prediction of performance problems [6], [7]. 

We argue that the latter is more powerful, allowing to 

prevent violations before they have happened by 

timely application of runtime adaptation actions [8], 

[9], [10].  However, preventing SLA violations is, in 

general, not for free. For instance, some alternative 

services usable in a composition may provide faster 

response times (thereby improving the end-to-end 

runtime of the composite service, SLOs), but those 

services are often more expensive than slower ones. 

Therefore, there is an apparent tradeoff between 

preventing SLA violations and the inherent costs of 

doing so. We argue that this tradeoff is currently 

not covered sufficiently in research. Instead, 

researchers as- sume that the ultimate goal of 

service providers is to minimize SLA violations, 

completely ignoring the often significant costs of 

doing so (e.g., [9], [10]). In this paper, we 

contribute to the state of the art by formalizing this 

tradeoff as an optimization problem, with the goal 

of minimizing the total costs (of violations and 

applied adaptations) for the service provider. We 

argue that this formulation better captures the real 

goals of service providers. Additionally, we present 

possible algorithms to solve this optimization 

problem efficiently enough to be applied at 

composition runtime. We evaluate these algo- 

rithms within our PREVENT (prediction and 

prevention based on event monitoring) framework 

[8]. The remainder of this paper is structured as 

follows: In Section 2, we motivate our work and 

present an illustrative example, which will guide us 

through the rest of the paper. Following in Section 

3, we present our earlier work on prevention of SLA 

violations. In Section 4, we formalize the problem of 

cost-based optimization of service compositions. We 

explain possible algorithms to solve this problem 

efficiently in Section 5, which are experimentally 

evaluated in Section 6. Finally, we compare our 

work with the most important related scientific 

approaches in Section 7, and conclude the paper in 

Section 8.  
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II. EXISTING SYSTEM: 
In this paper, we contribute to the state of the art 

by formalizing this tradeoff as an optimization 

problem, with the goal of minimizing the total costs 

(of violations and applied adaptations) for the service 

provider. We argue that this formulation better 

captures the real goals of service providers. 

 

III. DISADVANTAGES: 
There is an apparent tradeoff between preventing 

SLA violations and the inherent costs of doing so. We 

argue that this tradeoff is currently not covered 

sufficiently in research. Instead, researchers assume 

that the ultimate goal of service providers is to 

minimize SLA violations, completely ignoring the 

oftensignificant costs of doing so. 

 

IV. PROPOSED SYSTEM: 
we present possible algorithms to solve this 

optimization problem efficiently enough to be applied 

at composition runtime. We evaluate these algorithms 

within our PREVENT (prediction and prevention 

based on event monitoring) framework 

 

3.1ALGORITHMS: 

We will now discuss different approaches for finding 

solutions to this problem. These algorithms are 

implemented in the Cost-Based Optimizer component. 

Optimization is always triggered by a predicted 

violation of at least one SLO, and receives as input a 

list of monitored facts and estimates of the current 

instance. 

3.2 Branch-and-Bound 

Branch-and-bound is a very general deterministic 

algorithm for solving optimization problems. The 

high-level idea of this approach is to enumerate the 

solution space in a “smart” way so that at least some 

suboptimal solutions can be identified and discarded 

prematurely, i.e., before they have been fully 

constructed and evaluated. We use a binary encoding 

to represent solutions, i.e., every solution is 

represented as a binary vector, and an adaptation 

action with index j is applied iff the solution vector is 

1 at index j. For example, the solution vector 

00110100 encodes that the third, fourth, and sixth 

adaptation action should be applied. Evidently, 2jAj 

different solutions exist for each optimization 

problem, where jAj is the number of possible 

adaptation actions (but not all combinations need to 

be legal). For solutions that are still being constructed 

we allow a third symbol, “_”, representing an action 

that is still undecided (alive). We refer to solutions, 

which contain at least one alive action, as partial, and 

solutions, which do not contain any alive actions, as 

complete. Therefore, the vector 001101 _ 0 is a partial 

solution, where the last-but-one action is alive. We 

describe our general Branch-and-Bound  algorithm is 

easy to understand. What is the most important is the 

implementation of Line 13, the rules for pruning the 

search tree (i.e., for prematurely discarding solutions). 

In our Branch-and-Bound approach, we prune a 

partial solution in two cases: 1) if the partial solution 

already contains at least one conflict, or 2) if the 

partial solution already prevents all SLA violations 

(the penalty function ps is 0 for all s 2 S) without 

applying any more actions. Case 1 is trivial, because 

the target function value for all solutions in such a 

subtree will always be 1. Case 2 lends itself to more 

discussion. Remember the assumption that every 

action has nonnegative costs, and that we described 

SLA penalty functions as nonnegative functions. 

Therefore, we can assure that for any solution where 

all penalty functions are 0, the additional application 

of more actions can never improve the target function 

valueremaining solution subtree can be pruned. In 

Listing 6, we simply iterated over all actions in the 

order they appeared in the solution vector (in every 

step, we always just investigate the next action, see 

Lines 18 and 22). In general, this approach is 

suboptimal. Even though the order in which we 

investigate actions has no impact on the quality of our 

solution (the algorithm is deterministic, i.e., we will 

always find the global optimum eventually), the order 

may have an impact on the number of solutions we 

are able to prune. Assume the Fig. 6. Branch-and-

Bound algorithm. Fig. 7. Pruning of solution trees. 

following simple scenario: There is only one SLO and 

three possible adaptations. Only adaptation 3 is able to 

preventthe violation of the SLO. Actions 1 and 2 have 

costs but no relevant influence. There are no conflicts 

between actions. Hence, the optimal solution vector is 

001. In Fig. 7a, we strictly followed the algorithm in 

Listing 6 and investigated the actions in the order they 

appear in the solution vector. Since the only “useful” 

action is investigated last, we extend the whole 

solution tree without any pruning (the worst case, 

equivalent to full enumeration). Now, in Fig. 7b, we 

investigate the actions in reverse order (from back to 

front). Now, the “useful” action is investigated first, 

and a large part of this solution tree can be pruned 

according to pruning Case 2. Therefore, we can 

conclude that it is beneficial to investigate actions in a 

specific order that maximizes the number of solutions 

that can be pruned. We specify two possible criteria 

for this ordering: 1) the impact of an action on the 

SLOs (actions with higher total impact should be 

investigated first), and 2) the utility of an action 

(actions with higher utility should be investigated 

first. Based on the set of historical process instances 

that we have already used to train the Violation 

Predictors, we can calculate an estimation of impact 

and utility of each action as follows: We define the set 

of available historical process instances as H ¼ fh1; 

h2; . . . hqg, with H   I. We refer to the number 
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of historical instances as q ¼ jHj. Now, we are able to 

calculate an estimation of the overall impact of an 

adaptation action a on a SLO s as _a;s (Equation 8). 

Simply put, the impact is the arithmetic mean of the 

difference between SLO value with and without 

applying the adaptation to each historical instance. X 

msðhÞ À msðh 1 fagÞ the algorithm increases 

exponentially with the number of available actions. 

Even though we can reduce the runtime using impact- 

or utility-based sorting of actions, the complexity still 

remains exponential. Hence, there is an evident need 

to find strong heuristics, i.e., nondeterministic 

algorithms that find "good" (even if not necessarily 

optimal) solutions in polynomial time.  

A simple heuristic that is often used to very good ends 

is  

Local Search. Local Search is a metaheuristic, i.e., 

final solutions are constructed by iteratively 

improving a start solution. The general idea is that in 

each iteration the algorithm searches a specified 

neighborhood for better solutions than the current one. 

If at least one such solution is found, the algorithm 

progresses to the next iteration with one of the better 

solutions (typically, the best one in the neighborhood, 

equivalent to steepest descent). If no better solution 

can be found in the neighborhood, the algorithm has 

converged to a local optimum and is terminated. 

Usually, this algorithm is repeated multiple times with 

different starting solutions (because different starting  

 

        3.3 Local Search 

While the Branch-and-Bound algorithm discussed 

above has the advantage of always finding the optimal 

set of actions for any composition instance, the 

execution time of the local search algorithm as 

discussed above to each solution in the generation, 

basically reducing the population to a set of locally 

optimal solutions. Second, we remove the mutation 

operator from the algorithm (technically speaking, we 

set the mutation probability parameter to 0). The main 

reason is that given that all solutions in the population 

are already locally optimal, randomly mutating one bit 

in a solution can only lead to a worse solution. In 

theory, it is possible that multiple bits in a single 

solution are mutated at the same time, and that these 

mutations lead to an improvement, but this corner 

case is very unlikely in practice. Furthermore, the 

main motivation for having mutation in the first place 

was that it is the only way of introducing new actions 

in the canonical GA. This is no longer the case, 

because local search can do the same thing. the 

algorithm increases exponentially with the number of 

available actions. Even though we can reduce the 

runtime using impact- or utility-based sorting of 

actions, the complexity still remains exponential. 

Hence, there is an evident need to find strong 

heuristics, i.e., nondeterministic algorithms that find 

“good” (even if not necessarily optimal) solutions in 

polynomial time. 

 

3.4 Genetic Algorithm 

As an alternative to locality-based heuristics (local 

search, GRASP) we also present a solution based on 

the concept of evolutionary computation. More 

precisely, we use genetic algorithms (GAs) [23] as a 

more complex, but potentially also more powerful 

heuristic to generate good solutions to the cost-based 

optimization problem. The overall idea of GA is to 

mimic the processes of evolution in biology, 

specifically natural selection of the fittest individuals, 

crossover, and mutation. Therefore, in GA, we prefer 

to work on a population of solutions instead of a 

single one. We use the term “fit” to describe solutions 

with a good (low) target function value. First, we 

generate a random start population. For this, we use 

the same primitive construction scheme as discussed 

above for local search: We randomly apply m actions 

in every solution. Every following iteration of the 

algorithm (referred to as generations) essentially 

follows a three-step pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. Conclusion 

For providers of composite web services, it is 

essential to be able to minimize cases of SLA 

violations. One possible route to achieve this is to 

predict at runtime, which instances are in danger of 

violating SLAs, and to apply various adaptation 

actions to these instances only. However, it is not 

# name: grasp_init 

# input: number of start solutions n, 

RCS max size r 

# output: set of start solutions  

 

Grasp_init(n,r); 

G={ }//empty set of start solutions 

Repeat n times 

Pa=empty_partial_solution 

While(vc(pa)>0); 

rcs=construct_rcs(pa,r) 

break 

a=random(rcs) 

pa(a)=1 

add(G,pa) 

return G 
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trivial to identify which adaptations are the most cost- 

effective way to prevent any violation, or if it is at all 

possible to prevent a violation in a cost-effective way. 

In this paper, we have modeled this problem as a one-

dimensional discrete optimization problem. 

Furthermore, we have presented both, deterministic 

and heuristic solution algorithms. We have evaluated 

these algorithms based on a manufacturing case study 

and have shown which types of algorithms are better 

suited for which scenarios.                                                                  
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