
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 53|P a g e

Cost-Based Optimization of Service Compositions

*Turkar Vipul Prakash **Mrs.Rajeswari ,Asst.Professor

M.Tech schlor, CMR Engineering College,Hydearbad,India

CMR Engineering College,Hyderabad,India E-Mail:rajeswariimaturi@gmail.com

Abstract—

For providers of composite services, preventing cases of SLA violations is crucial. Previous work has

established runtime adaptation of compositions as a promising tool to achieve SLA conformance. However, to

get a realistic and complete view of the decision process of service providers, the costs of adaptation need to be

taken into account. In this paper, we formalize the problem of finding the optimal set of adaptations, which

minimizes the total costs arising from SLA violations and the adaptations to prevent them. We present possible

algorithms to solve this complex optimization problem, and detail an end-to-end system based on our earlier work

on the PREvent (prediction and prevention based on event monitoring) framework, which clearly indicates the

usefulness of our model. We discuss experimental results that show how the application of our approach leads to

reduced costs for the service provider, and explain the circumstances in which different algorithms lead to more

or less satisfactory results.

Index Terms—Service composition, service-level agreements, adaptation, optimization

I. INTRODUCTION
SERVICE BASED applications have seen

tremendous research activity in the last years, with

many important results being generated around the

world [1]. This global interest is justified by the ever

increasing services industry, which is still only

starting to explore the potential that new paradigms

like Everything-as-a-Service (XaaS) or cloud

computing provide [2]. However, to fully realize this

potential,research and industry alike need to focus

more strongly on nonfunctional properties and quality

issue of services (generally referred to as QoS). In the

business world, QoS promises are typically defined

within legally binding service-level agreements

(SLAs) between clients and service providers,

represented, e.g., using WSLA [3]. SLAs contain

service-level objectives (SLOs), i.e., concrete

numerical QoS objectives, which the service needs to

fulfill. If SLOs are violated, agreed upon monetary

consequences go into effect. For this reason, providers

generally have a strong interest in monitoring SLAs

and preventing viola- tions, either by using post

mortem analysis and optimiza- tion [4], [5], or by

runtime prediction of performance problems [6], [7].

We argue that the latter is more powerful, allowing to

prevent violations before they have happened by

timely application of runtime adaptation actions [8],

[9], [10]. However, preventing SLA violations is, in

general, not for free. For instance, some alternative

services usable in a composition may provide faster

response times (thereby improving the end-to-end

runtime of the composite service, SLOs), but those

services are often more expensive than slower ones.

Therefore, there is an apparent tradeoff between

preventing SLA violations and the inherent costs of

doing so. We argue that this tradeoff is currently

not covered sufficiently in research. Instead,

researchers as- sume that the ultimate goal of

service providers is to minimize SLA violations,

completely ignoring the often significant costs of

doing so (e.g., [9], [10]). In this paper, we

contribute to the state of the art by formalizing this

tradeoff as an optimization problem, with the goal

of minimizing the total costs (of violations and

applied adaptations) for the service provider. We

argue that this formulation better captures the real

goals of service providers. Additionally, we present

possible algorithms to solve this optimization

problem efficiently enough to be applied at

composition runtime. We evaluate these algo-

rithms within our PREVENT (prediction and

prevention based on event monitoring) framework

[8]. The remainder of this paper is structured as

follows: In Section 2, we motivate our work and

present an illustrative example, which will guide us

through the rest of the paper. Following in Section

3, we present our earlier work on prevention of SLA

violations. In Section 4, we formalize the problem of

cost-based optimization of service compositions. We

explain possible algorithms to solve this problem

efficiently in Section 5, which are experimentally

evaluated in Section 6. Finally, we compare our

work with the most important related scientific

approaches in Section 7, and conclude the paper in

Section 8.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 54|P a g e

II. EXISTING SYSTEM:
In this paper, we contribute to the state of the art

by formalizing this tradeoff as an optimization

problem, with the goal of minimizing the total costs

(of violations and applied adaptations) for the service

provider. We argue that this formulation better

captures the real goals of service providers.

III. DISADVANTAGES:
There is an apparent tradeoff between preventing

SLA violations and the inherent costs of doing so. We

argue that this tradeoff is currently not covered

sufficiently in research. Instead, researchers assume

that the ultimate goal of service providers is to

minimize SLA violations, completely ignoring the

oftensignificant costs of doing so.

IV. PROPOSED SYSTEM:
we present possible algorithms to solve this

optimization problem efficiently enough to be applied

at composition runtime. We evaluate these algorithms

within our PREVENT (prediction and prevention

based on event monitoring) framework

3.1ALGORITHMS:

We will now discuss different approaches for finding

solutions to this problem. These algorithms are

implemented in the Cost-Based Optimizer component.

Optimization is always triggered by a predicted

violation of at least one SLO, and receives as input a

list of monitored facts and estimates of the current

instance.

3.2 Branch-and-Bound

Branch-and-bound is a very general deterministic

algorithm for solving optimization problems. The

high-level idea of this approach is to enumerate the

solution space in a “smart” way so that at least some

suboptimal solutions can be identified and discarded

prematurely, i.e., before they have been fully

constructed and evaluated. We use a binary encoding

to represent solutions, i.e., every solution is

represented as a binary vector, and an adaptation

action with index j is applied iff the solution vector is

1 at index j. For example, the solution vector

00110100 encodes that the third, fourth, and sixth

adaptation action should be applied. Evidently, 2jAj

different solutions exist for each optimization

problem, where jAj is the number of possible

adaptation actions (but not all combinations need to

be legal). For solutions that are still being constructed

we allow a third symbol, “_”, representing an action

that is still undecided (alive). We refer to solutions,

which contain at least one alive action, as partial, and

solutions, which do not contain any alive actions, as

complete. Therefore, the vector 001101 _ 0 is a partial

solution, where the last-but-one action is alive. We

describe our general Branch-and-Bound algorithm is

easy to understand. What is the most important is the

implementation of Line 13, the rules for pruning the

search tree (i.e., for prematurely discarding solutions).

In our Branch-and-Bound approach, we prune a

partial solution in two cases: 1) if the partial solution

already contains at least one conflict, or 2) if the

partial solution already prevents all SLA violations

(the penalty function ps is 0 for all s 2 S) without

applying any more actions. Case 1 is trivial, because

the target function value for all solutions in such a

subtree will always be 1. Case 2 lends itself to more

discussion. Remember the assumption that every

action has nonnegative costs, and that we described

SLA penalty functions as nonnegative functions.

Therefore, we can assure that for any solution where

all penalty functions are 0, the additional application

of more actions can never improve the target function

valueremaining solution subtree can be pruned. In

Listing 6, we simply iterated over all actions in the

order they appeared in the solution vector (in every

step, we always just investigate the next action, see

Lines 18 and 22). In general, this approach is

suboptimal. Even though the order in which we

investigate actions has no impact on the quality of our

solution (the algorithm is deterministic, i.e., we will

always find the global optimum eventually), the order

may have an impact on the number of solutions we

are able to prune. Assume the Fig. 6. Branch-and-

Bound algorithm. Fig. 7. Pruning of solution trees.

following simple scenario: There is only one SLO and

three possible adaptations. Only adaptation 3 is able to

preventthe violation of the SLO. Actions 1 and 2 have

costs but no relevant influence. There are no conflicts

between actions. Hence, the optimal solution vector is

001. In Fig. 7a, we strictly followed the algorithm in

Listing 6 and investigated the actions in the order they

appear in the solution vector. Since the only “useful”

action is investigated last, we extend the whole

solution tree without any pruning (the worst case,

equivalent to full enumeration). Now, in Fig. 7b, we

investigate the actions in reverse order (from back to

front). Now, the “useful” action is investigated first,

and a large part of this solution tree can be pruned

according to pruning Case 2. Therefore, we can

conclude that it is beneficial to investigate actions in a

specific order that maximizes the number of solutions

that can be pruned. We specify two possible criteria

for this ordering: 1) the impact of an action on the

SLOs (actions with higher total impact should be

investigated first), and 2) the utility of an action

(actions with higher utility should be investigated

first. Based on the set of historical process instances

that we have already used to train the Violation

Predictors, we can calculate an estimation of impact

and utility of each action as follows: We define the set

of available historical process instances as H ¼ fh1;

h2; . . . hqg, with H I. We refer to the number

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 55|P a g e

of historical instances as q ¼ jHj. Now, we are able to

calculate an estimation of the overall impact of an

adaptation action a on a SLO s as _a;s (Equation 8).

Simply put, the impact is the arithmetic mean of the

difference between SLO value with and without

applying the adaptation to each historical instance. X

msðhÞ À msðh 1 fagÞ the algorithm increases

exponentially with the number of available actions.

Even though we can reduce the runtime using impact-

or utility-based sorting of actions, the complexity still

remains exponential. Hence, there is an evident need

to find strong heuristics, i.e., nondeterministic

algorithms that find "good" (even if not necessarily

optimal) solutions in polynomial time.

A simple heuristic that is often used to very good ends

is

Local Search. Local Search is a metaheuristic, i.e.,

final solutions are constructed by iteratively

improving a start solution. The general idea is that in

each iteration the algorithm searches a specified

neighborhood for better solutions than the current one.

If at least one such solution is found, the algorithm

progresses to the next iteration with one of the better

solutions (typically, the best one in the neighborhood,

equivalent to steepest descent). If no better solution

can be found in the neighborhood, the algorithm has

converged to a local optimum and is terminated.

Usually, this algorithm is repeated multiple times with

different starting solutions (because different starting

 3.3 Local Search

While the Branch-and-Bound algorithm discussed

above has the advantage of always finding the optimal

set of actions for any composition instance, the

execution time of the local search algorithm as

discussed above to each solution in the generation,

basically reducing the population to a set of locally

optimal solutions. Second, we remove the mutation

operator from the algorithm (technically speaking, we

set the mutation probability parameter to 0). The main

reason is that given that all solutions in the population

are already locally optimal, randomly mutating one bit

in a solution can only lead to a worse solution. In

theory, it is possible that multiple bits in a single

solution are mutated at the same time, and that these

mutations lead to an improvement, but this corner

case is very unlikely in practice. Furthermore, the

main motivation for having mutation in the first place

was that it is the only way of introducing new actions

in the canonical GA. This is no longer the case,

because local search can do the same thing. the

algorithm increases exponentially with the number of

available actions. Even though we can reduce the

runtime using impact- or utility-based sorting of

actions, the complexity still remains exponential.

Hence, there is an evident need to find strong

heuristics, i.e., nondeterministic algorithms that find

“good” (even if not necessarily optimal) solutions in

polynomial time.

3.4 Genetic Algorithm

As an alternative to locality-based heuristics (local

search, GRASP) we also present a solution based on

the concept of evolutionary computation. More

precisely, we use genetic algorithms (GAs) [23] as a

more complex, but potentially also more powerful

heuristic to generate good solutions to the cost-based

optimization problem. The overall idea of GA is to

mimic the processes of evolution in biology,

specifically natural selection of the fittest individuals,

crossover, and mutation. Therefore, in GA, we prefer

to work on a population of solutions instead of a

single one. We use the term “fit” to describe solutions

with a good (low) target function value. First, we

generate a random start population. For this, we use

the same primitive construction scheme as discussed

above for local search: We randomly apply m actions

in every solution. Every following iteration of the

algorithm (referred to as generations) essentially

follows a three-step pattern.

V. Conclusion

For providers of composite web services, it is

essential to be able to minimize cases of SLA

violations. One possible route to achieve this is to

predict at runtime, which instances are in danger of

violating SLAs, and to apply various adaptation

actions to these instances only. However, it is not

name: grasp_init

input: number of start solutions n,

RCS max size r

output: set of start solutions

Grasp_init(n,r);

G={ }//empty set of start solutions

Repeat n times

Pa=empty_partial_solution

While(vc(pa)>0);

rcs=construct_rcs(pa,r)

break

a=random(rcs)

pa(a)=1

add(G,pa)

return G

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 56|P a g e

trivial to identify which adaptations are the most cost-

effective way to prevent any violation, or if it is at all

possible to prevent a violation in a cost-effective way.

In this paper, we have modeled this problem as a one-

dimensional discrete optimization problem.

Furthermore, we have presented both, deterministic

and heuristic solution algorithms. We have evaluated

these algorithms based on a manufacturing case study

and have shown which types of algorithms are better

suited for which scenarios.

References:
[1] M.P. Papazoglou, P. Traverso, S. Dustdar, and

F. Leymann, "Service-Oriented Computing:

State of the Art and Research Challenges,"

Computer, vol. 40, no. 11, pp. 38-45, Nov.

2007.

[2] A. Lenk, M. Klems, J. Nimis, S. Tai, and T.

Sandholm, "What's Inside the Cloud? An

Architectural Map of the Cloud Landscape,"

Proc. ICSE Workshop Software Eng.

Challenges of Cloud Computing (CLOUD

'09) pp. 23-31, 2009.

[3] A. Dan, D. Davis, R. Kearney, A. Keller, R.

King, D. Kuebler, H. Ludwig, M. Polan, M.

Spreitzer, and A. Youssef, "Web Services on

Demand: WSLA-Driven Automated

Management," IBM Systems J., vol. 43, no. 1,

pp. 136-158, Jan. 2004.

[4] L. Bodenstaff, A. Wombacher, M. Reichert,

and M.C. Jaeger, "Analyzing Impact Factors

on Composite Services," Proc. IEEE Int'l

Conf. Services Computing (SCC '09), pp.

218-226, 2009.

[5] B. Wetzstein, P. Leitner, F. Rosenberg, S.

Dustdar, and F. Leymann, "Identifying

Influential Factors of Business Process

Performance Using Dependency Analysis,"

Enterprise Information Systems, vol. 4, no. 3,

pp. 1-8, July 2010.

[6] P. Leitner, B. Wetzstein, F. Rosenberg, A.

Michlmayr, S. Dustdar, and F. Leymann,

"Runtime Prediction of Service Level

Agreement Violations for Composite

Services," Proc. Third Workshop Non-

Functional Properties and SLA Management

in Service-Oriented Computing (NFPSLAM-

SOC '09), pp. 176-186, 2009.

[7] L. Zeng, C. Lingenfelder, H. Lei, and H.

Chang, "Event-Driven Quality of Service

Prediction," Proc. Sixth Int'l Conf. Service-

Oriented Computing (ICSOC '08). pp. 147-

161, 2008.

[8] P. Leitner, A. Michlmayr, F. Rosenberg, and

S. Dustdar, "Monitoring, Prediction and

Prevention of SLA Violations in Composite

Services," Proc. IEEE Int'l Conf. Web

Services (ICWS '10), pp. 369-376, 2010.

[9] S. Haykin, Neural Networks and Learning

Machines: A Comprehensive Foundation, third

ed. Prentice Hall, 2008.

[10] J.R. Quinlan, "Induction of Decision Trees,"

Machine Learning, vol. 1, pp. 81-106, Mar.

1986.

[11] D. Ivanovic, M. Carro, and M.

Hermenegildo, "Towards Data- Aware QoS-

Driven Adaptation for Service

Orchestrations," Proc. IEEE Int'l Conf. Web

Services (ICWS '10), pp. 107-114, 2010.

[12] L. Juszczyk and S. Dustdar, "Script-Based

Generation of Dynamic Testbeds for SOA,"

Proc. IEEE Int'l Conf. Web Services (ICWS '10),

pp. 195-202, 2010.

[13] M.C. Jaeger, G. Rojec-Goldmann, and G.

Muhl, "QoS Aggregation for Web Service

Composition Using Workflow Patterns,"

Proc. Eighth Int'l Enterprise Distributed

Object Computing Conference (EDOC '04),

pp. 149-159, 2004.

[14] L. Xu and B. Jennings, "A Cost-Minimizing

Service Composition Selection Algorithm

Supporting Time-Sensitive Discounts," Proc.

IEEE Int'l Conf. Services Computing (SCC '10),

pp. 402-408, 2010.

[15] T. Feo and M. Resende, "Greedy

Randomized Adaptive Search Procedures," J.

Global Optimization, vol. 6, pp. 109-133,

1995.

[16] D.E. Goldberg, Genetic Algorithms in

Search, Optimization, and Machine Learning.

Addison-Wesley Professional, 1989.

